ALL ABOUT NANOTECHNOLOGY

encyclopedia on nanaotechnology

 
Sponsered Links
poll
Lets have a poll
How do u find my blog?

really cool
awesome
not bad keep it up
great job
bad
Our Sponsers
Stats Counter
Translate Page!!
Select Language:
Welcome To My Blog! Have A Nice Stay!
Friday, October 19, 2007

Nanotechnology

Nanotechnology refers broadly to a field of applied science and technology whose unifying theme is the control of matter on the atomic and molecular scale, normally 1 to 100 nanometers, and the fabrication of devices within that size range. It is a highly multidisciplinary field, drawing from fields such as applied physics, materials science, colloidal science, device physics, supramolecular chemistry, and even mechanical and electrical engineering. Much speculation exists as to what new science and technology may result from these lines of research.


Nanotechnology can be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term. Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control.


The impetus for nanotechnology comes from a renewed interest in colloidal science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM), and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography and molecular beam epitaxy, these instruments allow the deliberate manipulation of nanostructures, and led to the observation of novel phenomena.


Examples of nanotechnology in modern use are the manufacture of polymers based on molecular structure, and the design of computer chip layouts based on surface science. Despite the great promise of numerous nanotechnologies such as quantum dots and nanotubes, real commercial applications have mainly used the advantages of colloidal nanoparticles in bulk form, such as suntan lotion, cosmetics, protective coatings, and stain resistant clothing.
posted by mba scholar @ 10:55 AM   0 comments
Origins
The first use of the distinguishing concepts in 'nanotechnology' (but predating use of that name) was in "There's Plenty of Room at the Bottom," a talk given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959. Feynman described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on down to the needed scale. In the course of this, he noted, scaling issues would arise from the changing magnitude of various physical phenomena: gravity would become less important, surface tension and Van der Waals attraction would become more important, etc.

This basic idea appears feasible, and exponential assembly enhances it with parallelism to produce a useful quantity of end products. The term "nanotechnology" was defined by Tokyo Science University Professor Norio Taniguchi in a 1974 paper (N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.) as follows: "'Nano-technology' mainly consists of the processing of, separation, consolidation, and deformation of materials by one atom or by one molecule." In the 1980s the basic idea of this definition was explored in much more depth by Dr. K. Eric Drexler, who promoted the technological significance of nano-scale phenomena and devices through speeches and the books Engines of Creation: The Coming Era of Nanotechnology (1986) and Nanosystems: Molecular Machinery, Manufacturing, and Computation, (1998, ISBN 0-471-57518-6), and so the term acquired its current sense. Nanotechnology and nanoscience got started in the early 1980s with two major developments; the birth of cluster science and the invention of the scanning tunneling microscope (STM).

This development led to the discovery of fullerenes in 1986 and carbon nanotubes a few years later. In another development, the synthesis and properties of semiconductor nanocrystals was studied. This led to a fast increasing number of metal oxide nanoparticles of quantum dots. The atomic force microscope was invented five years after the STM was invented. The AFM uses atomic force to see the atoms.
posted by mba scholar @ 10:53 AM   0 comments
Fundamental concepts
One nanometer (nm) is one billionth, or 10-9 of a meter. For comparison, typical carbon-carbon bond lengths, or the spacing between these atoms in a molecule, are in the range .12-.15 nm, and a DNA double-helix has a diameter around 2 nm. On the other hand, the smallest cellular lifeforms, the bacteria of the genus Mycoplasma, are around 200 nm in length. To put that scale in to context the comparative size of a nanometer to a meter is the same as that of a marble to the size of the earth. Or another way of putting it: a nanometer is the amount a man's beard grows in the time it takes him to raise the razor to his face .
posted by mba scholar @ 10:52 AM   0 comments
Larger to smaller: a materials perspective
A number of physical phenomena become noticeably pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects, for example the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes dominant when the nanometer size range is reached. Additionally, a number of physical properties change when compared to macroscopic systems. One example is the increase in surface area to volume of materials. This catalytic activity also opens potential risks in their interaction with biomaterials.

Materials reduced to the nanoscale can suddenly show very different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances become transparent (copper); inert materials become catalysts (platinum); stable materials turn combustible (aluminum); solids turn into liquids at room temperature (gold); insulators become conductors (silicon). A material such as gold, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination with nanotechnology stems from these unique quantum and surface phenomena that matter exhibits at the nanoscale.
posted by mba scholar @ 10:50 AM   0 comments

Molecular nanotechnology: a long-term view

Molecular nanotechnology, sometimes called molecular manufacturing, is a term given to the concept of engineered nanosystems (nanoscale machines) operating on the molecular scale. It is especially associated with the concept of a molecular assembler, a machine that can produce a desired structure or device atom-by-atom using the principles of mechanosynthesis. Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.


When the term "nanotechnology" was independently coined and popularized by Eric Drexler (who at the time was unaware of an earlier usage by Norio Taniguchi) it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular-scale biological analogies of traditional machine components demonstrated molecular machines were possible: by the countless examples found in biology, it is known that billions of years of evolutionary feedback can produce sophisticated, stochastically optimised biological machines.


It is hoped that developments in nanotechnology will make possible their construction by some other means, perhaps using biomimetic principles. However, Drexler and other researchers have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles, namely, a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) that would enable programmable, positional assembly to atomic specification (PNAS-1981). The physics and engineering performance of exemplar designs were analyzed in Drexler's book Nanosystems.
But Drexler's analysis is very qualitative and does not address very pressing issues, such as the "fat fingers" and "Sticky fingers" problems. In general it is very difficult to assemble devices on the atomic scale, as all one has to position atoms are other atoms of comparable size and stickyness. Another view, put forth by Carlo Montemagno, is that future nanosystems will be hybrids of silicon technology and biological molecular machines. Yet another view, put forward by the late Richard Smalley, is that mechanosynthesis is impossible due to the difficulties in mechanically manipulating individual molecules.


This led to an exchange of letters in the ACS publication Chemical & Engineering News in 2003. Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley. They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a nanotube nanomotor, a molecular actuator, and a nanoelectromechanical relaxation oscillator.


An experiment indicating that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bound the CO to the Fe by applying a voltage.
posted by mba scholar @ 10:46 AM   0 comments

Tools and techniques

Nanotechnological techniques include those used for fabrication of nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. However, all of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology and which were results of nanotechnology research.


Nanoscience and nanotechnology only became possible in the 1910sIn contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly. Another variation of the bottom-up approach is molecular beam epitaxy or MBE. Researchers at Bell Telephone Laboratories like John R. Arthur. Alfred Y. Cho, and Art C. Gossard developed and implemented MBE as a research tool in the late 1960s and 1970s. Samples made by MBE were key to the discovery of the fractional quantum Hall effect for which the 1998 Nobel Prize in Physics was awarded. MBE allows scientists to lay down atomically-precise layers of atoms and, in the process, build up complex structures. Important for research on semiconductors, MBE is also widely used to make samples and devices for the newly emerging field of spintronics.
Newer techniques such as Dual Polarisation Interferometry are enabling scientists to measure quantitatively the molecular interactions that take place at the nano-scale. with the development of the first tools to measure and make nanostructures. But the actual development started with the discovery of electrons and neutrons which showed scientists that matter can really exist on a much smaller scale than what we normally think of as small, and/or what they thought was possible at the time. It was at this time when curiosity for nanostructures had originated.


The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy, all flowing from the ideas of the scanning confocal microscope developed by Marvin Minsky in 1961 and the scanning acoustic microscope (SAM) developed by Calvin Quate and coworkers in the 1970s, that made it possible to see structures at the nanoscale. The tip of a scanning probe can also be used to manipulate nanostructures (a process called positional assembly). Feature-oriented scanning-positioning methodology suggested by Rostislav Lapshin appears to be a promising way to implement these nanomanipulations in automatic mode. However, this is still a slow process because of low scanning velocity of the microscope. Various techniques of nanolithography such as dip pen nanolithography, electron beam lithography or nanoimprint lithography were also developed. Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.


The top-down approach anticipates nanodevices that must be built piece by piece in stages, much as manufactured items are currently made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. By using, for example, feature-oriented scanning-positioning approach, atoms can be moved around on a surface with scanning probe microscopy techniques. At present, it is expensive and time-consuming for mass production but very suitable for laboratory experimentation.


posted by mba scholar @ 10:43 AM   0 comments
Applications
Although there has been much hype about the potential applications of nanotechnology, most current commercialized applications are limited to the use of "first generation" passive nanomaterials. These include titanium dioxide nanoparticles in sunscreen, cosmetics and some food products; silver nanoparticles in food packaging, clothing, disinfectants and household appliances; zinc oxide nanoparticles in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide nanoparticles as a fuel catalyst. The Woodrow Wilson Center for International Scholars' Project on Emerging Nanotechnologies hosts an inventory of consumer products which now contain nanomaterials.

However further applications which require actual manipulation or arrangement of nanoscale components await further research. Though technologies currently branded with the term 'nano' are sometimes little related to and fall far short of the most ambitious and transformative technological goals of the sort in molecular manufacturing proposals, the term still connotes such ideas. Thus there may be a danger that a "nano bubble" will form, or is forming already, from the use of the term by scientists and entrepreneurs to garner funding, regardless of interest in the transformative possibilities of more ambitious and far-sighted work.

The National Science Foundation (a major source of funding for nanotechnology in the United States) funded researcher David Berube to study the field of nanotechnology. His findings are published in the monograph “Nano-Hype: The Truth Behind the Nanotechnology Buzz". This published study (with a foreword by Anwar Mikhail, Senior Advisor for Nanotechnology at the National Science Foundation) concludes that much of what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end up with a few suppliers selling low margin products in huge volumes."
posted by mba scholar @ 10:41 AM   0 comments
Implications
Due to the far-ranging claims that have been made about potential applications of nanotechnology, a number of concerns have been raised about what effects these will have on our society if realized, and what action if any is appropriate to mitigate these risks. Short-term issues include the effects that widespread use of nanomaterials would have on human health and the environment. Longer-term concerns center on the implications that new technologies will have for society at large, and whether these could possibly lead to either a post scarcity economy, or alternatively exacerbate the wealth gap between developed and developing nations.
posted by mba scholar @ 10:40 AM   0 comments
Health risks and environmental issues
There is growing body of scientific evidence which demonstrates the potential for some nanomaterials to be toxic to humans or the environment. The smaller a particle, the greater its surface area to volume ratio and the higher its chemical reactivity and biological activity.

The greater chemical reactivity of nanomaterials results in increased production of reactive oxygen species (ROS), including free radicals. ROS production has been found in a diverse range of nanomaterials including carbon fullerenes, carbon nanotubes and nanoparticle metal oxides. ROS and free radical production is one of the primary mechanisms of nanoparticle toxicity; it may result in oxidative stress, inflammation, and consequent damage to proteins, membranes and DNA . The extremely small size of nanomaterials also means that they are much more readily taken up by the human body than larger sized particles.

Nanomaterials are able to cross biological membranes and access cells, tissues and organs that larger-sized particles normally cannot . Nanomaterials can gain access to the blood stream following inhalation or ingestion . At least some nanomaterials can penetrate the skin ; even larger microparticles may penetrate skin when it is flexed . Broken skin is an ineffective particle barrier , suggesting that acne, eczema, shaving wounds or severe sunburn may enable skin uptake of nanomaterials more readily.

Once in the blood stream, nanomaterials can be transported around the body and are taken up by organs and tissues including the brain, heart, liver, kidneys, spleen, bone marrow and nervous system . Nanomaterials have proved toxic to human tissue and cell cultures, resulting in increased oxidative stress, inflammatory cytokine production and cell death. Unlike larger particles, nanomaterials may be taken up by cell mitochondria and the cell nucleus . Studies demonstrate the potential for nanomaterials to cause DNA mutation and induce major structural damage to mitochondria, even resulting in cell death. Size is therefore a key factor in determining the potential toxicity of a particle. However it is not the only important factor.

Other properties of nanomaterials that influence toxicity include: chemical composition, shape, surface structure, surface charge, aggregation and solubility , and the presence or absence of functional groups of other chemicals . The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account.

In its seminal 2004 report Nanoscience and Nanotechnologies: Opportunities and Uncertainties, the United Kingdom's Royal Society recommended that nanomaterials be regulated as new chemicals, that research laboratories and factories treat nanomaterials "as if they were hazardous", that release of nanomaterials into the environment be avoided as far as possible, and that products containing nanomaterials be subject to new safety testing requirements prior to their commercial release. Yet regulations world-wide still fail to distinguish between materials in their nanoscale and bulk form.

This means that nanomaterials remain effectively unregulated; there is no regulatory requirement for nanomaterials to face new health and safety testing or environmental impact assessment prior to their use in commercial products, if these materials have already been approved in bulk form. The health risks of nanomaterials are of particular concern for workers who may face occupational exposure to nanomaterials at higher levels, and on a more routine basis, than the general public. According to the Center for Responsible Nanotechnology which describe themselves as "boosters for safe use of nanotechnology"

Molecular manufacturing allows the cheap creation of incredibly powerful devices and products. How many of these products will we want? What environmental damage will they do? The range of possible damage is vast, from personal low-flying supersonic aircraft injuring large numbers of animals to collection of solar energy on a sufficiently large scale to modify the planet's albedo and directly affect the environment. Stronger materials will allow the creation of much larger machines, capable of excavating or otherwise destroying large areas of the planet at a greatly accelerated pace.

It is too early to tell whether there will be economic incentive to do this. However, given the large number of activities and purposes that would damage the environment if taken to extremes, and the ease of taking them to extremes with molecular manufacturing, it seems likely that this problem is worth worrying about. Some forms of damage can result from an aggregate of individual actions, each almost harmless by itself. Such damage is quite hard to prevent by persuasion, and laws frequently don't work either; centralized restriction on the technology itself may be a necessary part of the solution.

Finally, the extreme compactness of nanomanufactured machinery will tempt the use of very small products, which can easily turn into nano-litter that will be hard to clean up and may cause health problems . The site list numerous other risks and benefits.

The International Council on Nanotechnology maintains a database and Virtual Journal of scientific papers on environmental, health and safety research on nanoparticles. The database currently has over 2000 entries indexed by particle type, exposure pathway and other criteria.
The Project On Emerging Nanotechnologies currently lists 502 products that manufacturers have voluntarily identified that use nanotechnology . No labeling is required by the FDA so that number could be significantly higher.

The ongoing debate over nanofood safety and regulations has slowed the introduction of nanofood products, but research and development continue to thrive - though, interestingly, most of the larger companies are keeping their activities quiet (when you search for the term 'nano' or nanotechnology' on the websites of Kraft, Nestle, Heinz and Altria you get exactly zero results). Although the risks associated with nanotechnology in other areas, such as cosmetics and medicine, are equally blurry, it seems the difference is that the public is far less apt to jump on the nanotechnology bandwagon when it comes to their food supply Nanotechnology food coming to a fridge near you.

Recently "a broad international coalition of consumer, public health, environmental, labor, and civil society organizations spanning six continents called for strong, comprehensive oversight of the new technology and its products" according to the International Center for Technology Assessment in its report Principles for the Oversight of Nanotechnologies and Nanomaterials.

Hundreds of consumer products incorporating nanomaterials are now on the market, including cosmetics, sunscreens, sporting goods, clothing, electronics, baby and infant products, and food and food packaging. But evidence indicates that current nanomaterials may pose significant health, safety, and environmental hazards. In addition, the profound social, economic, and ethical challenges posed by nano-scale technologies have yet to be addressed ... 'Since there is currently no government oversight and no labeling requirements for nano-products anywhere in the world, no one knows when they are exposed to potential nanotech risks and no one is monitoring for potential health or environmental harm. That's why we believe oversight action based on our principles is urgent' ... This industrial boom is creating a growing nano-workforce which is predicted to reach two million globally by 2015. 'Even though potential health hazards stemming from exposure have been clearly identified, there are no mandatory workplace measures that require exposures to be assessed, workers to be trained, or control measures to be implemented,' explained Bill Kojola of the AFL-CIO. 'This technology should not be rushed to market until these failings are corrected and workers assured of their safety'

The group has urged action based on eight principles. They are 1) A Precautionary Foundation 2) Mandatory Nano-specific Regulations 3) Health and Safety of the Public and Workers 4) Environmental Protection 5) Transparency 6) Public Participation 7) Inclusion of Broader Impacts and 8) Manufacturer Liability.
posted by mba scholar @ 10:23 AM   0 comments
Broader societal implications and challenges
Beyond the toxicity risks to human health and the environment which are associated with first-generation nanomaterials, nanotechnology has broader societal implications and poses broader social challenges. Social scientists have suggested that nanotechnology's social issues should be understood and assessed not simply as "downstream" risks or impacts. Rather, the challenges should be factored into "upstream" research and decision making in order to ensure technology development that meets social objectives. Many social scientists and organizations in civil society suggest that technology assessment and governance should also involve public participation.

Some observers suggest that nanotechnology will build incrementally, as did the 18-19th century industrial revolution, until it gathers pace to drive a nanotechnological revolution that will radically reshape our economies, our labour markets, international trade, international relations, social structures, civil liberties, our relationship with the natural world and even what we understand to be human. Others suggest that it may be more accurate to describe change driven by nanotechnology as a “technological tsunami”. Just like a tsunami, analysts warn that rapid nanotechnology-driven change will necessarily have profound disruptive impacts. As the APEC Center for Technology Foresight observes:

If nanotechnology is going to revolutionise manufacturing, health care, energy supply, communications and probably defence, then it will transform labour and the workplace, the medical system, the transportation and power infrastructures and the military. None of these latter will be changed without significant social disruption.

The implications of the analysis of such a powerful new technology remain sharply divided. Nano optimists, including many governments, see nanotechnology delivering:
  • environmentally benign material abundance for all by providing universal clean water supplies
  • atomically engineered food and crops resulting in greater agricultural productivity with less labour requirements
  • nutritionally enhanced interactive ‘smart’ foods
  • cheap and powerful energy generation
  • clean and highly efficient manufacturing
  • radically improved formulation of drugs, diagnostics and organ replacement
  • much greater information storage and communication capacities
  • interactive ‘smart’ appliances; and increased human performance through convergent technologies

Nano skeptics suggest that nanotechnology will simply exacerbate problems stemming from existing socio-economic inequity and unequal distributions of power, creating greater inequities between rich and poor through an inevitable nano-divide (the gap between those who control the new nanotechnologies and those whose products, services or labour are displaced by them). Skeptics suggest the possibility that nanotechnology has the potential to destabilise international relations through a nano arms race and the increased potential for bioweaponry; thus, providing the tools for ubiquitous surveillance with significant implications for civil liberties. Also, the skeptics believe it might break down the barriers between life and non-life through nanobiotechnology, redefining even what it means to be human

posted by mba scholar @ 10:15 AM   0 comments
Welcome To My Blog! Have A Nice Stay!
Google Search!!
Google
About Me

Name: mba scholar
Home: India
About Me:
See my complete profile
Previous Post
Archives
Sponsered Links!!
Links
Say Something!!

BLOGGER

©If There Is Any Copyright Voilation Contact Me At AshokMarwaha.Ldh@Gmail.com .I Will Remove It©